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values of approximately 18 dB, a rather reasonable number. I

would ask the authors to comment on the method used to avoid

direct crosstalk from the input to the output, (crosstalk would

bypass the complementary bandpass filter) in the data of Fig. 6.

To achieve rejection values of 50 to 60 dB normally requires

coupling of each resonant section to a different point along the

main line with the distance between the coupling points being

selected for proper phase cancellation. Such a technique was

presented in [2].

Replyz by J.-R. Qian and W.-C. Zhuang3

The object of our paper [1] is to achieve high rejection values

(over 40 dB) in the stopband for a bandstop waveguide filter

without requiring many coupling irises along the main waveguide.

It is just the distinguished feature against others.

We agree with Mr. Snyder that the obtainable rejection for our

filters is determined by the return loss and the orthogonality of

the two coupling irises.

The return loss or the reflection from the bandstop filters can

be divided into two parts according to the following substitution.

When the first and last equations of (3) in [1] are inserted into (8)

in [1], it is easy to find that the transmission and reflection

coefficients for the bandstop filters shown in Fig. 2(b) in [1] are

(1)

In the case of u = ti~, the vector diagram for t’ and r’ is shown

in Fig. 1. In order to make the resultant of the two components

of r’ in (1) equal to a unit vector and t’= O, these two compo-

nents must be 90° out of phase with each other; therefore ii and

i;, are in phase at frequencies o = a;. At the frequencies other

than poles in the stopband, ii and i; are almost in phase, so that

t‘ = O and r’= 1. At the frequencies in the passbands of the

filters, i{ and ij are almost 90° out of phase with each other, so

that the two components of r’ cancel out, and then the resultant

r’ is restricted below a prescribed level.

This is the physical reason why there are poles and zeros in the

frequency bands. So the return loss or the reflections of the two

coupling irises is not a problem in our filters.

As Mr. Snyder mentioned, the crosstalk may have happened

because of imperfections in orthogonality of the two irises. The

imperfections cause direct coupling from the input of the band-

stop filter to the output. This coupling effect can be taken into

account by a bypassing reactance jX6, which, in parallel to the

mutual inductance M&, directly connects the source e. to the

load RO.

Taking account of introducing X~ into Fig. 2(b) in [1], the loop

equations for the bandstop filters can be rewritten as (3) in [1],4

but the element Z in the second column should be in place of

(Z – jM~~/Xb). This means that the i[ loop is detuned and can

be easily compensated by adjusting the tuning screw of the first

cavity.
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Fig. 1. Vector diagram for t’ aud r’.

Therefore, as long as X~ >> M&, the insertion of the X~ has no

effect on the accuracy of the theory described in [1], and this has

been confirmed by the experiment mentioned before [1].

Even though the high rejection values in the stopbands are

obtainable theoretically, the experimental results shown in Fig. 6

in [1] could not be obtained without making the auxiliary experi-

ments with several steps, which ensure the expected values of the

parameters R, M‘s to be carried out and the resonant frequen-

cies of each cavity to be identical.
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Comment on” Fast-Fourier-Transform Method for

Calculation of SAR Distributions in Finely

Discretized Inhomogeneous Models

of Biological Bodies”

ALLEN TAFLOVE, SENIORMEMBER,IEEE,AND

KORADA R. UMASHANKAR, SENfORMEMBER,IEEE

In the above paper,l Bornp and Gandhi state in their Section

IV that, in addition to their FFT method, “Thus far, the only

technique available to compute SAR distributions for models of

man is the method of moments (MOM).” In this letter, we would

like to point out that there exists a viable alternative numerical

approach which has been the subject of intense research and

numerous publications over the past ten years. In fact, some nine

years ago, an article in the same MTT TRANSACTIONS [1] dis-

cussed the application of this approach to a three-dimensional

tissue geometry having 14079 space cells for purposes of comput-

ing the SAR distribution as well as the induced temperatures.
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This approach is called by us the finite-difference time-domain

(FD-TD) solution of Maxwell’s curl equations. Our publications

through the years [1]–[8] have established that FD-TD can accu-

rately model electromagnetic-wave penetration and scattering

interactions with complex metal, dielectric, and biological ob-

jects. Ourmost recent work [9]demonstrates high accuracy(~ 1

dB over a 40-dB dynamic range) in modeling the scattering

properties of a nine-wavelength three-dimensional scatterer of

complex shape. FD-TD models having inexcessof106 space cells

have been successfully run [10].

We wish to call this to the attention of the authors of the above

paper so that in future articles they may place their work in

proper perspective, and properly inform their readers of the

state-of-the-art.
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Comments on “Application of Boundary-Element
Method to Electromagnetic Field Problems”

N. MORITA, SEN1ORMEMBER,IEEE

The above paperl has explained a general formulation of the

boundary-element method (BE~ for analyzing two-dimensional

electromagnetic fields, and has presented numerical examples for
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some bounda~ shapes to show that the BEM is a very powerful

numericaf method for solving electromagnetic field problems. It

gives accurate results with far fewer nodes than the finite-element

method, and can also treat field problems in unbounded regions

without any additional complications.

I wonder, however, why such an argument is necessary now.

The BEM is not a new method, but just the surface integral

equation method which has already been proved to be a very

useful method in the areas of electromagnetic and other fields.

The literature is extensive on the analysis of electromagnetic field

problems by integral equations, on discussions of integral equa-

tions themselves, on their discretization methods, etc. References

[1] and [2] were probably the first to present a practical and

numerical technique using integral equations for electromagnetic

field problems. Several good books and review papers describing

the use of numerical techniques for integral equations have also

been published [3]-[6].

The discretization method in the BEM is explained in detail in

the above paper.1 The method shown is, however, just one of

many methods now available. It is the one based on the ap-

proximation of unknown functions by means of the triangular

subsectional functions, which has been proved to be more effec-

tive for some cases than the step function approximation [3], [7],

[8], [12]. Of course, there are many other better functions to be

used depending upon the problem to be solved.

In Section V of the above paper? an integral equation formula-

tion for scattering from dielectric bodies is presented. However,

the problem of scattering from material bodies, such as dielectric

and gyrotropic bodies, has been treated extensively in the past

literature. Various kinds of integral equations for analyzing these

problems are now available [9]–[14]. The set of equations given in

the above paperl is essentially the same as one of those used in

the past [11], [15], [16], and can easily be derived using the

integral relation on the incident field. In addition, the equation

shown is inferior to ones used in the past since the term involving

the incident wave is unnecessarily complex. Furthermore, the

problem of erroneous resonant solutions involved in these types

of equations is not stated at all. The problem of non-uniqueness,

which is often associated with simple surface integral equations,

has been discussed by many researchers [17]-[22], [13].

I would like to add that the above paperl treats only the

two-dimensional problems, even though a lot of numerical results

have already been given for three-dimensional electromagnetic

field problems. (Some of these can be found in the list of

References.)

Finally, I don’t think that the whole literature on the integral

equation formulation can be neglected by using the “anesthetic”

by the name of the “ boundaty-element method,” of which only

the label is new.

The author wishes to thank Prof. R. F. Barrington for careful

reading of the manuscript.
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